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When two atomic orbitals are used to accommodate the electrons of the three-electron bond (or three-electron
two-center bond), it is well-known that the valence bond (A4 ‚B4 ≡ A2B4 T A4 B2 ) and molecular orbital (one
antibonding+ two bonding electrons) descriptions of this type of bond are equivalent, i.e.Ψ ) Ψ(VB) )
Ψ(MO). With three atomic spin orbitals to accommodate the electrons ofA2B4 , and three additional atomic
spin orbitals to accommodate the electrons ofA4 B2 , it is deduced that a wave function of the formΨ )
Ψ1(VB) + Ψ2(VB) ) Ψ1(MO) + Ψ2(MO) may be constructed from each set of three atomic spin orbitals,
for which theΨ1 andΨ2 are three-electron bond wave functions. The equivalence is illustrated via the
results of someab initio calculations for the ground states of H2

- and He2+. For H2-, the use of canonical
double-ú molecular orbitals constructed from 1s′ and 1s′′ atomic orbitals on each atomic center must lead to
ionization of this anion to form H2 when the exponents of the diffuse (1s′′) orbital components of these
molecular orbitals are energy-optimized.

Introduction

The “three-electron bond” or three-electron two-center bond,
as symbolized by the valence bond (VB) structure 1, was first

formulated1,2 by Pauling in 1931. The simplest orbital descrip-
tion of this bond involves three electrons distributed among two
overlapping atomic orbitals (AOs) centered on two atomic
centers. This type of bond is now receiving much attention3-32,
via both experimental and theoretical studies. Its relevance for
valence bond (VB) descriptions of the electronic structures of
electron-rich diamagnetic systems with four-electron three-center
and six-electron four-center bonding units in particular, as well
as paramagnetic systems with three-electron two-center and five-
electron three-center bonding units, has been described and
stressed on very many occasions.12-25 Indeed, it is considered
that the three-electron bond (together with the associated
increased-valence structures for the electron-rich diamagnetic
systems12,14-25,33,34) “probes the ultimate limit of valence for
electron-rich molecules”.4b In this paper, further consideration
is provided for the theory of the three-electron bond, in particular
when double-ú AO basis sets are used to accommodate the three
electrons.
Pauling’s VB structure 1 for the three-electron bond is

equivalent to resonance between Lewis-type VB structures 2
and 3. Because the three-electron bond involves effectively only
one bonding electron, the Linnett-type symbolism12-25,35-37 for
this structure, as in 4 or 5, is to be preferred and will be used
here. With one AO per atomic center, the identity of eq 1

is obtained, in which the odd electron has anR spin wave
function. The a and b are the overlapping AOs, andψab) a+
kb and ψ*ab ) k*a - b are the orthogonal bonding and

antibonding molecular orbitals (MOs) that may be constructed
as linear combinations of these AOs. (The a and b AOs may
be of the general form a) ∑cµøµ

A and b) ∑cνøν
B, in which

theøµ
A andøν

B are unhybridized AOs centered on the A and B
atomic nuclei, respectively. Double-ú and triple-ú a and b AOs
provide examples of these types of AOs.) The identity shows
the equivalence that exists between the VB and MO descriptions
of the three-electron bond when two AOs are used to accom-
modate the electrons.

It is noted here that other VB symbols have also been used7

to represent the three-electron bond. These symbols include
those of structures 6 and 7. The identity of eq 1 applies also to
each of them when two AOs are used to construct the three-
electron wave function.

When more than two (hybrid or nonhybrid) AOs are used to
accommodate the electrons, for example a and b0 for the AO
configuration (a)2(b0)1 for structure 2, and a0 and b for the AO
configuration (a0)1(b)2 for structure 3, it is considered that an
equivalence no longer exists between the primary VB and MO
formulations.30-32,38 However when three atomic spin orbitals
are used to accommodate the electrons of VB structure 2, and
three additional atomic spin orbitals are used to accommodate
the electrons of VB structure 3, it is still possible to formulate
a three-electron bonding wave function of the form

with each set of AOs. One may then use VB structures of the
type 4 or 5 to provide compact VB representations of the three-
electron bond. The primary purpose of this paper is to provide
a derivation of eq 2 via the use of four atomic spin orbitals to
accommodate the A electrons of structure 2 and the B electrons
of structure 3. Aspects of this identity will be illustrated via
the results of someab initioVB calculations for H2- and He2+,
using 1s AOs for both systems and also 1s and 2p AOs for
H2
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A‚‚‚B
(1)

A2 B4
(2)

A4 B2
(3)

A4 ‚B4
(4)

‚A‚B‚
(5)

Ψ(VB) ) Ψ2 + kΨ3 ) |aRbRaâ| + k|aRbRbâ|
≡ |aRbRψab

â| ≡Ψ1 orΨ4 orΨ5≡
-(1+ kk*) |ψab

Rψ*ab
Rψab

â| ) Ψ(MO) (1)

A BA B ••• •
(6) (7)

Ψ ) Ψ1(VB) + Ψ2(VB) ) Ψ1(MO) + Ψ2(MO) (2)
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Derivation of Ψ ) Ψ1(VB) + Ψ2(VB) ) Ψ1(MO) +
Ψ2(MO)

Atomic orbitals designated as a′, a′′, and b0 will be used to
accommodate the three electrons of VB structure 2, with
opposed spins for the a′ and a′′ electrons. The corresponding
AOs for VB structure 3 are b′, b′′, and a0, with opposed spins
for the b′ and b′′ electrons. A Linnett-type VB structure of
type 4 may be constructed by delocalizing either an A electron
of structure 2 into an AB bonding MO or a B electron of
structure 3 into an AB bonding MO, as is indicated in 2f 8
and 3f 9, respectively.

Initially we shall give attention to the 2f 8 delocalization.
Because either an a′ electron or an a′′ electron may be
delocalized, two bonding MOs may be constructed, namely,ψa′b0
) a′ + k′b0 and ψa′′b0 ) a′′ + k′′b0. The resulting orbital
configurations are then (a′′)1(b0)1(ψa′b0)1 and (a′)1(b0)1(ψa′′b0)1,
respectively. The twoS) MS ) 1/2 spin wave functions of
eqs 3-6 may then be constructed for each of these configura-
tions.

TheΨI(a′′b0ψa′b0) of eq 3 is used here to demonstrate that
ΨI-type wave functions involve parallel spins (S) 1) for the
b0 electron and either the a′′ electron (eq 3) or the a′ electron
(eq 5). The analysis proceeds according to eqs 7-9.

BecauseS) MS ) +1/2, the spin of theψa′b0 electron in eq
9 is opposed to those of the a′′ and b0 electrons.
The orbital spins of theΨII-type wave functions of eqs 4

and 6 may be similarly analyzed. For example,

thereby indicating that the spin of the a′′ electron of eq 4 is
opposed to that of the b0 electron. Similarly in eq 6, the spins
of the b0 and a′ electrons are opposed.
On substitution of the LCAO forms ofψa′b0 andψa′′b0 into

eqs 3-6, we obtain eqs 13-16.

Inspection of theΨI andΨII wave functions of eqs 13 and
14 shows that they are orthogonal only whenk′ ) 0 if AO
overlap integrals are omitted. Similarly the wave functions of
eqs 15 and 16 are orthogonal whenk′′ ) 0.
We now (nonvariationally) linearly combine theΨI-type wave

functions of eqs 13 and 15, to generate eqs 17-20,

in which ψ*a′b0 ) k′*a′ - b0 andψ*a′′b0 ) k′′*a′′ - b0 are
antibonding MOs which are orthogonal to the bonding MOs
ψa′b0 andψa′′b0, respectively.
Each of the Slater determinants of eq 18 may be associated

with a VB structure of type 4 or 5. If theR andâ spin electrons
are represented by crosses and circles respectively, then these
structures become 10 and 11.

In eq 19, the equivalent MO formulation is provided for the
Slater determinants of eq 18. However unless a′ ) a′′ ) a and
b′ ) b′′ ) b, each of the Slater determinants of eqs 18 and 19
is not anS) 1/2 spin eigenfunction of the spin operatorŜ2;
only the linear combination of the two Slater determinants
corresponds to anS) 1/2 spin eigenstate.
Inspection of eqs 18 and 19 indicates that they provide an

example of the identity of eq 2.
When a′ ) a′′ ) a and b′ ) b′′ ) b, eq 20 reduces to zero.

Further consideration will not be given to eq 20 when a′ * a′′
and b′ * b′′.

Further Details for Ψ ) Ψ1(VB) + Ψ2(VB) ) Ψ1(MO) +
Ψ2(MO)

The ΨII-type wave functions of eqs 14 and 16 may be
similarly linearly combined to give eqs 21-23.

A B
• • •

A B
•••

(2) (8) (3) (9)

A B
• •

• A B
• •

•

ΨI(a′′b0ψa′b0
) )

2|a′′Rb0Rψa′b0
â| - |a′′Rb0âψa′b0

R| - |a′′âb0Rψa′b0
R| (3)

ΨII(a′′b0ψa′b0
) ) |a′′Rb0âψa′b0

R| - |a′′âb0Rψa′b0
R| (4)

ΨI(a′b0ψa′′b0
) )

2|a′Rb0Rψa′′b0
â| - |a′Rb0âψa′′b0

R| - |a′âb0Rψa′′b0
R| (5)

ΨII(a′b0ψa′′b0
) ) |a′Rb0âψa′′b0

R| - |a′âb0Rψa′′b0
R| (6)

ΨI(a′′b0ψa′b0
) ) 2|a′′Rb0Rψa′b0

â| -
|a′′Rb0âψa′b0

R| - |a′′âb0Rψa′b0
R| (7)

) 2|a′′Rb0Rψa′b0
â| - |(a′′Rb0â + a′′âb0

R)ψa′b0
R|
(8)

) 2{(a′′)1(b0)
1(S) MS) 1)}{(ψa′b0

)1(S)

1/2,MS) -1/2)} - {(a′′)1(b0)
1(S) 1,MS) 0)} ×

{(ψa′b0
)1(S) 1/2,MS) +1/2)} (9)

ΨII(a′′b0ψa′b0
) ) |a′′Rb0âψa′b0

R| - |a′′âb0Rψa′b0
R| (10)

) |(a′′Rb0â - R′′âb0
R)ψa′b0

R| (11)

) {(a′′)1(b0)
1(S) 0,MS) 0)}{(ψa′b0

)1(S)

1/2,MS) +1/2)} (12)

ΨI(a′′b0ψa′b0
) ) 2|a′′Rb0Ra′â| - |a′′Rb0âa′R| - |a′′âb0Ra′R| +

3k′|a′′Rb0Rb0
â| (13)

ΨII(a′′b0ψa′b0
) ) |a′′Rb0âa′R| - |a′′âb0Ra′R| + k′|a′′Rb0âb0

R|
(14)

ΨI(a′b0ψa′′b0
) ) 2|a′Rb0Ra′′â| - |a′Rb0âa′′R| - |a′âb0Ra′′R| +

3k′′|a′Rb0Rb0
â| (15)

ΨII(a′b0ψa′′b0
) ) |a′Rb0âa′′R| - |a′âb0Ra′′R| + k′′|a′Rb0âb0

R|
(16)

ΨI(a′′b0ψa′b0
) + ΨI(a′b0ψa′′b0

) ) 3(|a′′Rb0Ra′â| +
|a′Rb0Ra′′â| + k′|a′′Rb0Rb0

â| + k′′|a′Rb0Rb0
â|) (17)

) 3(|a′′Rb0Rψa′b0
â| + |a′Rb0Rψa′′b0

â|) (18)

) -3{|ψa′′b0
Rψ*a′′b0

Rψa′b0
â|/(1+ k′′k′′*) +

|ψa′b0
Rψ*a′b0

Rψa′′b0
â|/(1+ k′k′*)} (19)

ΨI(a′′b0ψa′b0
) - ΨI(a′b0ψa′′b0

) ) |a′′Rb0Ra′â| - |a′Rb0Ra′′â| +
3k′|a′′Rb0Rb0

â| - 3k′′|a′Rb0Rb0
â| - 2|a′Rb0âa′′R| (20)

(10)

A B
x x

°
(11)

Ax x° B
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In eq 22,φ*a′b0 ) a′ - k′b0, φ*a′′b0 ) a′′ - k′′b0. In eq 23,
φa′b0 ) k′*a′ + b andφa′′b0 ) k′′*a′′ + b are bonding MOs that
are orthogonal to the antibonding MOsφ*a′b0 and φ*a′′b0.
Inspection of eq 23 shows thatΨII(a′′b0ψa′b0) + ΨII(a′b0ψa′′b0)
is equivalent to a linear combination of two three-electron
antibonding configurations.

As was indicated earlier, a VB structure of the type 4 may
also be generated from the Lewis structure 3, by delocalizing a
b′ or b′′ electron into either theψb′a0 ) b′ + l′a0 or theψb′′a0 )
b′′ + l′′a0 bonding MO. Appropriate wave functions are those
of eqs 24-27

and the equivalence that exists between eqs 26 and 27 provides
a second example of the identity of eq 2.

Each of the fourΨI-type wave functions of eqs 13, 15, 24,
and 25 involves two types of (S) 0 spin) AO configurations
for the two-electron A or B components of the Lewis structures
2 and 3. These configurations are (i) open-shell (a′)1(a′′)1 or
(b′)1(b′′)1 and (ii) closed-shell (b0)2 or (a0)2. The third electron
for (i) occupies either a b0 or an a0 AO, whereas for (ii), this
electron occupies one of the a′, a′′, b′, or b′′ AOs.
The best linear combination of the fourΨI-type wave

functions is given by eq 28 or 29,

and it is equivalent to the best linear combination of six (S)
MS) 1/2 spin) AO configurations for the three electrons. The
latter linear combination involves five independent variational
parameters, which may be related to thek′, k′′, l′, andl′′ polarity
parameters and theµ of eq 28 or eq 29.

When a′ and b′, a′′ and b′′, and a0 and b0 are pairs of
symmetrically equivalent AOs, the number of variational

parameters reduces to two, namely,k′ ) l′, k′′ ) l′′ with µ )
(1.
Values ofµ ) -1 andµ ) +1 then give diatomic2Σu

+ and
2Σg

+ states, respectively. Forµ ) -1,ΨI of eq 27 is equivalent
to eqs 30-32.

In eq 32, theψi wave functions for the Lewis VB structures
of types 2 and 3 are non-normalized at this stage; for example,
ψ1{(a′a′′)b0} ) |a′′Rb0Ra′â| + |a′Rb0Ra′′â|. In terms of the
associatedCi coefficients, the MO polarity parametersk′ and
k′′ are given by eq 33.

If a′ ≡ a′′ ≡ a and b′ ≡ b′′ ≡ b, i.e. a single-ú basis set is
used to accommodate the two A electrons of VB structure 2
and the two B electrons of VB structure 3, then eqs 30-32
reduce to eqs 34-36,

to give a simpler type of VB-MO equivalence. Thus in each
of eqs 31 and 35, each Slater determinant involves MOs that
are constructed as linear combinations of only two AOs. These
MOs are not the canonical MOs, simple forms of which we
shall now consider.

Canonical Molecular Orbital Configuration

In the previous section it was demonstrated that when more
than two (nonhybridized or hybridized) AOs are used as a basis
set for VB and MO formulations of the three-electron bond, a
MO-VB equivalence is obtained via resonance between several
three-electron two-AO configurations, each of which may be
formulated in either a VB or MO manner. The equivalence no
longer exists if canonical MOs are used to accommodate the
electrons. To illustrate this nonequivalence, we consider the
simplest2Σu

+ case, with the canonical MOs constructed from
the AOs a and b, and a0 and b0. The canonical MOs and the
lowest energy MO configuration are then given by eqs 37 and
38, respectively.

ΨII(a′′b0ψa′b0
) + ΨII(a′b0ψa′′b0

) ) |a′′Rb0Ra′â| +
|a′Rb0Ra′′â| - k′|a′′Rb0Rb0

â| - k′′|a′Rb0Rb0
â| (21)

) |a′′Rb0R
φ*a′b0

â| + |a′Rb0R
φ*a′′b0

â| (22)

) -{|φa′b0
R
φ*a′b0

R
φ*a′b0

â|/(1+ k′k′*) +

|φa′′b0
R
φ*a′′b0

R
φ*a′′b0

â|/(1+ k′′k′′*)} (23)

ΨI(b′′a0ψb′a0
) ) 2|b′′Ra0

Rb′â| + 3l′|b′′Ra0
Ra0

â| +
|b′′Rb′Ra0

â| - |a0Rb′Rb′′â| (24)
ΨI(b′a0ψb′′a0

) ) 2|b′Ra0
Rb′′â| + 3l′′|b′Ra0

Ra0
â| +

|b′Rb′′Ra0
â| - |a0Rb′′Rb′â| (25)

ΨI(b′′a0ψb′a0
) + ΨI(b′a0ψb′′a0

) ) 3(|b′′Ra0
Rψb′a0

â| +
|b′Ra0

Rψb′′a0
â| (26)

) -3{|ψb′′a0
Rψ*b′′a0

Rψb′a0
â|/(1+ l′′l′′*) +

|ψb′a0
Rψ*b′a0

Rψb′′a0
â|/(1+ l′l′*)} (27)

ΨI(a′,a′′,b′,b′′) ) ΨI(a′′b0ψa′b0
) + ΨI(a′b0ψa′′b0

) +

µ{ΨI(b′′a0ψb′a0
) + ΨI(b′a0ψb′′a0

)} (28)

) 3{|a′′Rb0Rψa′b0
â| + |a′Rb0Rψa′′b0

â| + µ(|b′′Ra0
Rψb′a0

â| +
|b′Ra0

Rψb′′a0
â|)} (29)

ΨI(a′,a′′,b′,b′′) ) 3{(|a′′Rb0Rψa′b0
â| + |a′Rb0Rψa′′b0

â| -
(|b′′Ra0

Rψb′a0
â| + |b′Ra0

Rψb′′a0
â|)} (30)

) -3{(|ψa′′b0
Rψ*a′′b0

Rψa′b0
â| - |ψb0a′′

Rψ*b0a′′
Rψb0a′

â|)/
(1+ k′′k′′*) + (|ψa′b0

Rψ*a′b0
Rψa′′b0

â| -
|ψb0a′

Rψ*b0a′
Rψb0a′′

â|)/(1+ k′k′*)} (31)

) C1[ψ1{(a′a′′)b0} - ψ1{(b′b′′)a0}] + C2[ψ2{a′(b0b0)} -
ψ2{b′(a0a0)}] + C3[ψ3{a′′(b0b0)} - ψ3{b′′(a0a0)}] (32)

k′ ) C3/C1, k′′ ) C2/C1 (33)

ΨI(a,b)) 6(|aRb0
Rψab0

â| - |bRa0
Rψba0

â|) (34)

) -6(|ψab0

Rψ*ab0
Rψab0

â| - |ψba0

Rψ*ba0
Rψba0

â|)/(1+ kk*)

(35)

) C1[ψ1{(aa)b0} - ψ1{(bb)a0}] + C2[ψ2{a(b0b0)} -
ψ2{b(a0a0)}] (36)
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In eq 38, only the Slater determinants|(a+ b)R(a+ b)â(a-
b)R| and|(a0 + b0)R(a0 + b0)â(a0 - b0)R| generateS) 1/2 spin
three-electron bond VB structures of the type 10. (It is noted
that each of the Slater determinants|(a + b)R(a0 + b0)â(a -
b)R| and|(a0 + b0)R(a+ b)â(a0 - b0)R| corresponds to a three-
electron bond structure of the type 10, but, as is the case for
the Slater determinants of eqs 17, 18, 26, and 27, neither of
them alone is anS) 1/2 spin eigenfunction). The remaining
six Slater determinants, either alone or in pairs, generate a
variety of S ) 1/2 spin configurations, none of which corre-
sponds to a three-electron bond configuration. ThereforeΨ1-
(CMO) does not correspond to a linear combination of three-
electron bond configurations. The same result arises when
Ψ1(CMO) is interacted variationally with the five2Σu

+ excited
configurations that have two bonding electrons and one anti-
bonding electron. This configuration interaction (CI) is equiva-
lent to the construction of the variational linear combination of
eq 39,

with æ1 ) a+ b,æ2 ) a- b,æ3 ) a0 + b0, andæ4 ) a0 - b0.
It will now be assumed that the orbital exponents (ú) for the

a0 and b0 AOs are smaller than are those for the a and b AOs.
For a given internuclear separation, if the energy for the three-
electron bond configuration|æ1

Ræ1
âæ2

R| lies above the energy
for the electron-pair bond configuration|æ1

Ræ1
â|, then for fixed

values of the exponents of the a and b AOs, energy optimization
of the a0 and b0 exponents for the2Σu

+ CMO configuration of
eq 38 will generate values of zero for these latter exponents.
This result applies also to the AO configurations|(aRbâ + bRaâ)-
a0R| and|(aRbâ + bRaâ)b0R|, which are included in theΨ1(CMO)
andΨ(MOCI), and (for2Σg

+ states) to|(aRaâ)a0R| + |(bRbâ)-
b0R|. Each of these latter wave functions generates a two-
electron1Σg

+ rather than a three-electron2Σu
+ wave function

when energy optimization of the exponents of a0 and b0 occurs.
Thus optimization of the exponents for the double-ú CMO
configuration of eq 38 leads to the loss of the antibonding
electron. This effect is illustrated via the results of someab
initio calculations for H2- that are described in the next section.
However at moderate internuclear separations, nonionization of
the 2Σu

+ anion will occur when either the|(aRbâ + bRaâ)a0R|
and |(aRbâ + bRaâ)b0R| configurations are omitted or the MO
parametersk1 andk2 of eq 37 are set equal to each other so that
the same two double-ú AOs (a + ka0) and (b + kb0)
accommodate the three electrons in each of the VB structures
2 and 3. An eq 1-type MO-VB identity then is obtained.
The considerations also indicate that fully variational VB

calculations which have included|(aRbâ + bRaâ)a0â| and|(aRbâ

+ bRaâ)b0R| type configurations must give erroneous conclusions

with regard to the electronic structure of the H2
- anion. Such

calculations, as well as the corresponding canonical MO
calculations, underestimate the bond length; cf. refs 39 and 40
for example.

Calculations for He2+ and H2
- with 1s AOs

Roso’s ab initio program17,23,25,41,42was used to perform
elementary VB calculations for He2+ and H2-, in order to
illustrate aspects of the above theory. Initially the calculations
were of the single-ú type, with two 1s AOs. The AO exponents
were chosen to be those for He(+0.5) and H(-0.5), i.e. (2 +
1.6875)/2 and (1+ 0.6875)/2, respectively. Minimum energies
of -4.9031 and-0.9704 au for He2+ and H2- were calculated
to occur for equilibrium internuclear separations (Re) of 2.1 and
3.5 au, respectively.
Some VB calculations were then performed for H2

- and He2+

with double-ú 1s AOs for the H- and He. For an infinite
internuclear separation, the 1s AO exponents have the following
values: H2-: ú(a0) ) ú(b0) ) 1; ú(a′) ) ú(b′) ) 1.0392;ú(a′′)
) ú(b′′) ) 0.2832; He2+: ú(a0) ) ú(b0) ) 2; ú(a′) ) ú(b′) )
2.1382; ú(a′′) ) ú(b′′) ) 1.1885. The resulting STO-6G
energies for H+ H- and He+ + He are-1.012 925 and
-4.873 438 au, respectively. The (S ) 1/2) spin Lewis
structures of Table 1 were included in the molecular calculations,
with no reoptimization of orbital exponents. For H2-, the energy
is minimized (-1.018 754 au) atRe ) 5.4 au, to givek′ )
0.0175 andk′′ ) 0.0857. The corresponding quantities for He2

+

areE ) -4.935 76 au,Re ) 2.25 au,k′ ) 0.0522, andk′′ )
0.4576.
It is to be expected that the less firmly bound a′′ and b′′

electrons should delocalize more extensively than do the a′ and
b′ electrons, and becausek′′ is calculated to be larger thank′,
this expectation is realized for both systems. It is also found
that He2+ has the largerk′ andk′′ values. This reflects that the
propensity for delocalization to occur for He2

+ is substantially
greater than it is for H2-, thereby providing assistance for the
formation of a shorter, stronger bond in the former species.

TABLE 1: He 2
+ VB Calculations for Eqs 32a

structures |Ci|a |Ci|b
(a′a′′)b0, (b′b′′)a0 0.272 820 0.421 334
a′(b0b0), b′(a0a0) 0.124 835 0.049 997
b′′(a0a0), a′′(b0b0) 0.014 236 0.009 485

E(Re)/au -4.935 76
E(R)∞)/au -4.873 44
k′′ 0.4576
k′ 0.0522
Re/au 2.25

aCoefficients for non-normalizedS) 1/2 spin AO configurations.
bCoefficients for normalizedS) 1/2 spin AO configurations.

TABLE 2: H 2
- VB Calculations for Eqs 32a

structures |Ci|a |Ci|b |Ci|a |Ci|b
(a′a′′)b0, (b′b′′)a0 0.362 679 0.576 752 0.365 648 0.578 267
a′(b0b0), b′(a0a0) 0.032 239 0.032 165 0.036 053 0.035 895
b′′(a0a0), a′′(b0b0) 0.006 753 0.006 553 0.009 259 0.008 919
(a′pA)b0, (b′pB)a0 0.055 880 0.076 571
pA(b0b0), pB(a0a0) 0.018 717 0.017 622

E(Re)/au -1.018 75 -1.019 63
E(R)∞)/au -1.012 93 -1.012 93
k′′ 0.0857
k′ 0.01752
Re/au 5.4 4.95

aCoefficients for non-normalizedS) 1/2 spin AO configurations.
bCoefficients for normalizedS) 1/2 spin AO configurations.

φ1 ) a+ b+ k1(a0 + b0), φ2 ) a- b+ k2(a0 - b0)

φ3 ) a+ b- k3(a0 + b0), φ4 ) a- b- k4(a0 - b0) (37)

Ψ1(CMO)) |φ1R
φ1

â
φ2

R| ) |(a+ b)R(a+ b)â(a- b)R| +
k2|(a+ b)R(a+ b)â(a0 - b0)

R| + k1
2|(a0 + b0)

R ×
(a0 + b0)

â(a- b)R| + k1
2k2|(a0 + b0)

R(a0 + b0)
â(a0 -

b0)
R| + k1{|(a+ b)R(a0 + b0)

â(a- b)R| + |(a0 + b0)
R(a+

b)â(a- b)R|} + k1k2{|(a+ b)R(a0 + b0)
â(a0 - b0)

R| +
|(a0 + b0)

R(a+ b)â(a0 - b0)
R|} (38)

Ψ(MOCI) ) C1|æ1
Ræ1

âæ2
R| + C2|æ1

Ræ1
âæ4

R| +
C3|æ3

Ræ3
âæ2

R| + C4|æ3
Ræ3

âæ4
R| + C5(|æ1

Ræ3
âæ2

R| +
|æ3

Ræ1
âæ2

R|) + C6(|æ1
Ræ3

âæ4
R| + |æ3

Ræ1
âæ4

R|) (39)
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For H2-, Ψ(MOCI) of eq 39 involves a linear combination
of six S) 1/2 spin configurations, each of which involves two
bonding electrons and one antibonding electron. With a( b
) 1s′A ( 1s′B and a0 ( b0 ) 1s′′A ( 1s′′B, we have performed
variational best calculations of linear combinations of these six
configurations. The 1s′ AO exponent has been assigned a value
of unity, but different values for the 1s′′ AO exponent have
been chosen. The results are reported in Table 3. These results
show that as the 1s′′ exponent is decreased, the coefficient of
|æ1

Ræ1
âæ4

R| approaches unity, and the coefficients of the
remaining configurations approach zero. Whenú′′ ) 0, the
configuration |æ1

Ræ1
âæ4

R| reduces to|æ1
Ræ1

â|, which corre-
sponds to the single-ú bonding MO configuration for H2. Thus
optimization of the diffuse orbital exponent of H2- at inter-
nuclear separations leads to ionization of the anion. This is
not the case for He2+ (Table 4); when a value of 2.0 is assigned
to the 1s′ exponent, the optimum value forú′′ is 1.5 in theΨ-
(MOCI) of eq 39 whenR ) 2 au for example. The resulting
energy is-4.909 86 au; each of the six bonding configurations
that are linearly combined in eq 39 makes a non-negligible
contribution.
At R) 1.65 au, and withú′ ) 1.0, eq 36 for the2Σu

+ wave
function for H2- is energy-optimized whenú′′ ) 0.74. The
energy is-0.827 81 au. WhenR) ∞, the energy is-0.846 45
for ú′ ) 1.0 andú′′ ) 0.74.
An earlier VB study43 of H2

-, which suggested that the
ground state for this anion has2Σg

+ symmetry, has been shown
to be fallacious.39,44 The reason for this is that optimization of
the exponent for the midbond AO which accommodates the third
electron of the configuration designated asΨ(H2,e) in ref 43
leads to ionization of the anion to form H2.

Calculations for H2
- with 1s AO for H, and 1s and 2pσ

AOs for H-

In Table 2, the results of some VB calculations for H2
-, with

2pσ AOs included for the H-, are also reported. The 2p AO
exponent for the (1s)1(2p)1 configuration of H- has an energy-
optimized value of zero. An estimate of 0.304 297 for the 2p
AO exponent was calculated for the closed-shell (2p)2 config-
uration from the energy minimization ofê2 - ê + 0.391406ê.
The four additional Lewis structures that have been included
in the VB calculations (Table 2) arise when the a′ or b′ electron
of each of the (a′a′′′)b0 and (b′b′′′)a0 configurations (a′′′ ) 2pA,
b′′′ ) 2pB, with 〈2pA|2pB〉 > 0) is delocalized into either the
ψ′a′b0 ) a′ + K′b0 MO or the ψ′b′a0 ) b′ + K′a0 MO.
(Delocalization of the a′′′ ) 2p electron generates no additional
Lewis structures). The resulting wave function is given by eqs
40 and 41,

and interacts with theΨI(a′,a′′,b′,b′′) of eq 26 to give the CI
wave function of eq 42.

A minimum energy of-1.019 630 au for eq 41 occurs forRe
) 4.95 au. The resulting values for the polarity parameters
and CI coefficientF arek′ ) 0.0253,k′′ ) 0.0855,F ) 0.1528,
andK′ ) 0.3349 whenK′′′ ) k′′.

Increased-Valence Structures

On many occasions,12,14-25,33,34,41,42increased-valence struc-
tures of the type 12 have been obtained by spin-pairing the

antibonding electron of the AB three-electron bond configuration
|ψab

Rψab
âψ*abR| with the unpaired electron of a Y atom, when

the latter electron occupies an AO (y) that overlaps withψ*ab.
The resultingS) 0 spin wave function is given by eq 44.

To obtain a double-ú formulation for eq 45, it is necessary
to replace the three-electron bond components of the Slater
determinants in eq 45 by the three-electron bond formulation
of eq 28. Eight rather than two Slater determinants will then
contribute toΨ12, each of which may be expressed in terms of
either VB or MO configurations.

Conclusions

The establishment of equivalences between the VB and MO
descriptions of the three-electron bond when more than two AOs
are used to accommodate the electrons has required the inclusion
in the VB resonance scheme of additional AO configurations
for VB structures of types 2 and 3. Use of either of these
equivalent formulations for the three-electron bond configuration
of H2

- does not lead to ionization of the third electron of this
anion at normal internuclear separations. In contrast, this

TABLE 3: H 2
- Energies (au) and Coefficients for theΨ(MOCI) of Eq 39, with R ) 1.65 au,ê′ ) 1.00, and Variableê′′

ê′′ E C1 C2 C3 C4 C5 C6

0.6875 -0.982 24 1.686 -2.085 -0.319 0.930 -0.241 -0.320
0.5500 -1.001 16 0.877 -1.662 -0.002 0.220 -0.237 0.064
0.3000 -1.042 24 0.187 -1.161 0.014 0.017 -0.077 0.082
0.1000 -1.083 95 0.003 1.008 -0.001 -0.001 0.011 -0.025
0.0100 -1.098 22 0.001 1.000 -3× 10-7 -1× 10-6 1× 10-4 -0.001
0.0010 -1.098 44 3× 10-6 1.000 0.000 1× 10-8 1× 10-6 -3× 10-5

0.0001 -1.098 44 1× 10-8 1.000 0.000 0.000 1× 10-8 9× 10-7

TABLE 4: He 2
+ Energies (au) and Coefficients for the

Ψ(MOCI) of Eq 39, with R ) 2.00 au,ê′ ) 2.00, andê′′ )
1.5 (Energy-Optimized) (For ê′′ ) 1.4 and 1.6,E )
-4.909 81 and-4.909 56)

ê′′ E C1 C2 C3 C4 C5 C6

1.5 -4.909 86 0.350 -0.419 0.086 0.240-0.529 -0.109

ΨI(a′,a′′′,b′,b′′′) ) ΨI(a′′′b0ψ′a′b0) + ΨI(a′b0ψa′′′b0
) -

ΨI(b′′′a0ψ′b′a0
) - ΨI(b′a0ψb′′′a0

) (40)

) 3{|a′′′Rb0Ra′â| + |a′Rb0Ra′′′â| - |b′′′Ra0
Rb′â| -

|b′Ra0
Rb′′′â| + K′(|a′′′Rb0Rb0

â| + |b′′′Ra0
Ra0

â|) +

K′′′(|a′Rb0Rb0
â| - |b′Ra0

Ra0
â|)} (41)

ΨI(CI) ) ΨI(a′,a′′,b′,b′′) + FΨI(a′,a′′,b′,b′′′) (42)

) C1[ψ1{(a′a′′)b0} - ψ1{(b′b′′)a0}] + C2[ψ2{a′(b0b0)} -
ψ2{b′(a0a0)}] + C3[ψ3{a′′(b0b0)} - ψ3{b′′(a0a0)}] (43)

C4[ψ4{(a′a′′′)b0} - ψ4{(b′b′′′)a0}] + C5[ψ5{a′′′(b0b0)} -
ψ5{b′′′(a0a0)}]

Y A B
•

•
• •

(12)

(Y A B)
•

•
• •

ψ

(45)

(44)= |ψab
αψab

βψ*ab
αyβ|–|ψab

αψab
βψ*ab

βyα|

= – (1 + kk*)(|aαψab
βbαyβ|–|ψab

αaβbβyα|)

2500 J. Phys. Chem. A, Vol. 101, No. 13, 1997 Harcourt



ionization occurs when canonical MOs are used to accommodate
the electrons, and the orbital exponent for the antibonding
electron is energy-optimized.
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